Let us look at the problem in Home Work 1 .

$$
r(t)=\binom{t}{t^{2}}
$$

$$
\begin{array}{r}
a(t) \hat{v} v(t) \quad v(t)=\binom{1}{2 t} \\
a(t)=\binom{0}{2}
\end{array}
$$

A point is moving along a parabolic trajectory.

Define tangential component of the acceleration

$$
\begin{aligned}
a_{T}(t) & =p r j_{[v(t)]} a(t) \\
& =\binom{4 t /\left(1+4 t^{2}\right)}{8 t^{2} /\left(1+4 t^{2}\right)}
\end{aligned}
$$

You need to calculate t th is

Use $a_{T}=\frac{a \cdot v}{v \cdot v} \quad v(t)$
The normal component a_{N} is given by

$$
a_{N}=a-a_{T}=-4 t /\left(1+4 t^{2}\right)
$$

Many often, one defines unit vectors along tangent and normal directions as follows:

$$
\begin{aligned}
u(t) & =\frac{V(t)}{\|v(t)\|} \\
& =\left(\frac{(4 n) t \operatorname{tangent~vectrer}) .}{\sqrt{1+4 t^{2}}}\left|\frac{1}{\sqrt{1+4 t^{2}}}\right|\right.
\end{aligned}
$$

It turns out that $\dot{u}(t)$ is automatically perpendicular to $u(t)$ and is therefore in he normal direction.

$$
\dot{u}(t)=\frac{2}{\left(1+4 t^{2}\right)^{3 / 2}}\binom{-2 t}{1}
$$

which is perpendicular for u. It is not of unit length though.
we can define

$$
p(t)=\frac{\dot{u}}{\|\dot{u}\|}=\left.\frac{1}{\sqrt{1+4 t^{2}}}\right|_{1} ^{-2 H}
$$

unit normal vectors

Thus we have a unit tangent vector

$$
u(t)
$$

\&
unit normal vector

$$
p(1)
$$

associated with a curve. on a plane.

Note that we also have.

$$
\dot{u}(t)=\frac{2}{1+4 t^{2}} p(t)
$$

can also calculate

$$
\dot{p}(t)=-\frac{2}{1+4 t^{2}} u(t)
$$

The quantify
Correction:
Curvature is defined by normalizing this
at. So Curvature $=2 /\left[\left(1+4 t^{\wedge} 2\right)^{\wedge}(3 / 2)\right]$
This way, the defined curvature is independent
the trajectory:...
is denoted by K and is called the "curvature," and we have

$$
\begin{aligned}
& \dot{u}(t)=y<(t) p(t) \\
& \dot{p}(t)=-\gamma<(t u(t)
\end{aligned}
$$

For any plane curve there is an efl like $t+$ riot relates unit tangent with unit normal vector.

The curvature K describes the shape of the curve at any pt. on the carne.

- Note that for t large $X(t)=\frac{2}{1+4 t^{2}}$ is small and approaches 0. This means mat for laze t, the proabola looks like a shaigh line
- At $t=0 \quad x=2$. We define $1 / K$ to be he adios of curative R. $R=1 / 2$ for $t=0$. His mean the f the paschal is closely approximated by a circle of ratios $1 / 2$.

The differential equation

$$
\begin{array}{cc}
\dot{u}=k p \quad u(0)=\binom{1}{0} \\
\dot{p}=-k u \quad p(0)=\binom{0}{1} \\
x=\frac{2}{1+4 t^{2}}
\end{array}
$$

describes how the coordinate axis mover with the curve.

How the co-ondinate axis moves is dictated precisely by ede "shape" of the curve.

If you are looking for additional challenges solve

$$
\begin{array}{ll}
\dot{u}=k p . & y=\frac{2}{1+4 t^{2}} \\
\dot{p}=-x u \\
\dot{\tilde{r}}=u &
\end{array}
$$

and solve the diff eq.
Take $\tilde{\gamma}(0)=\binom{0}{0} \quad u(0)=\binom{1}{0}$

$$
p(0)=\binom{0}{1}
$$

See that you get a pexbola. Change the I.C. and see mat you still get a parable oriented differently.

Upshot:-
There is somelting magical about $y=\frac{2}{1+4 t^{2}}$
Independent of the initial condition, It defines the shape of a paxhila through a diff.eqn.

Remark:
In standard text, curvature is defined by normalizing the function kappa by the speed. This normalized quantity is defined to be the curvature \kappa.
Thus we have

$$
\begin{aligned}
& C=\frac{2}{1+4 t^{2}} \\
& \text { Curvature }=\frac{2}{\left(1+4 t^{2}\right)^{3}}
\end{aligned}
$$

